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CONCLUSIONS

This work has demonstrated the feasibility of the V-

line as a surface-wave guiding structure supporting

higher-order hybrid modes of propagation. Various

characteristics of such modes have been discussed

qualitatively on the basis of algebraic solutions of the

characteristic equation and, more quantitatively, on

the basis of numerical solutions obtained for a variety

of orders and dielectric constants.

Experimental confirmation of the theory has been

successful qualitatively and quantitatively for the

second-order principal mode. Verification has been ob-

tained for the exclusion of the transverse electric mode

from the V-line with insulated plates, thereby confirm-

ing that it is the high-order hybrid modes rather than

the simpler low-order transverse modes that are of
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interest for operation with disjoint plates. The edita-

bility of joining the plates affords distinct advantages

in launching and detecting the modes and in the versa-

tility of the V-line.

The V-line configuration with separated plates or

truncated apex appears well suited to convenient elec-

tronic control of propagation characteristics through the

use of a ferroelectric binding medium. The plates serve

as supports for the structure, as image surfaces for the

guidecl wave, and as electrodes for the application of

bias potentials. The V-line is distinguished from some

other configurations that permit bias fields across a

binding medium in that it confines the propagating or

radiating fields to one side of the dielectric. The region

of the apex remains available for auxiliary structures,

such as exciting or detecting mechanisms.

Wave Propagation in a Medium with

Progressive Sinusoidal Disturbance*

A. HESSEL~, MEMBER, IRE, AND A. A. OLINER~,

Surnmar~-A recent paper by Simon derives approximate re-

sults, employing only three space harmonics, for the propagation

characteristics of an electromagnetic wave traveling in a medium

possessing a progressive sinusoidal disturbance. A rigorous result is

presented here for this same problem, taking into account all of the

space harmonics; also, a sufficiency condkion for the convergence

of this solution is dk.cussed. This sufficiency condition is not satisfied

in a particular case treated by Simon, It is shown that hk analysis of

thk case is in error, and that the total field is singular there. The

singular nature of the field is associated with “supersonic” effects in

the medium containing the progressive disturbance.

INTRODLTCTION

A

STIMULATING, recent paper’ by Simon pre-

sents solutions for the propagation characteris-

tics of an electromagnetic wave traveling in a

medium possessing a progressive sinusoidal disturbance.

This disturbance is expressed in terms of a time-varying

dielectric constant, in the form
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using the notation

FELLOW, IRE

employed by

a

Simon. The electro-

magnetic field is then expanded in terms of spatial har-

monics and a relation is found between the amplitudes

of these space harmonics. This relation is essentially a

system of infinite homogeneous equations with an in-

finite number of unknowns. Simon then points out that

in problems of interest q is very small, and that a rigor-

ous solution to this system of equations is not simple to

obtain. He, therefore, adopts a perturbation approach,

and retains only the lowest three of the infinite num-

ber of space harmonics. With this approximation, he

obtains a deterrninantal equation for the propagation

constants, solves this equation for several interesting

special cases, and then obtains the corresponding space-

harmonic amplitudes.

A major contribution of Simon’s paper lies in the

stress he places on the interrelation between physical

concepts in different disciplines. For exam pie, while it

has long been known that a stop band for electromag-

netic waves in a periodic structure corresponds to Bragg

reflection in crystals, Simon relates the Doppler effect

produced in a stop band associated with a moving cllis-

turbance to parametric amplification phenomena. The

conditions for both up-conversion and down-conversion

are considered in some detail, and approximate expres-

sions are presented for the propagation constants and

the frelcls. An additional so-called “triple root” case is

also treated in some detail, but the results are of ques-

tionable value, for reasons presented below,
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1)
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this note we wish to:

present a rigorous result to the problem treated

by Simon, taking into account all of the space

harmonics, rather than only three,

present a “su$ciency condition” between the vari-

ous physical quantities which, if satisfied, insures

the validity of any space-harmonic type of solu-

tion, and

apply this ‘(sufficiency condition” to the various

cases considered by Simon, and indicate the ranges

of parameter values to be excluded from his solu-

tions. Particular stress is laid on his triple root

case, which does not satisfy this condition. Both

physical and mathematical reasoning is presented

in verification.

RIGOROUS RESULT

Over most of the range of frequency and wavenum-

ber values, the perturbation solution of Simon is com-

pletely adequate for very small values of cl. In particu-

lar regions, however, the perturbation solution is in-

valid. For example, as pointed out by Simon, his solu-

tion cannot apply to regions corresponding to the

higher-order stop bands, or Bragg reflections. It is de-

sirable, therefore, to have available a rigorous solution.

Let us first review, for the sake of clarity, the basic

steps involved in the development of such a rigorous

solution. We are concerned with the propagation of

electromagnetic waves in an infinite medium possessing

a fixed permeability IJO and a time-varying dielectric

constant C(Z, t) of the form given by (l). Such a medium

is created by the presence of a traveling disturbance;

examples of the source of such a disturbance could be

an electromagnetic ‘(pump” wave or an acoustic wave,

the latter constituting an example of microwave-phonon

interaction. The assumption (1) regarding the proper-

ties of the medium thus linearizes the basically nonlin-

ear interaction problem.

Let us restrict the development below to TEM mode

propagation in a direction parallel or antiparallel to the

moving disturbance. (Simon initially considers a

slightly more general case, but he immediately there-

after reduces his relations to those for TEM modes. )

Under these conditions, the wave equation for the elec-

tric field E(z, t) becomes

d’ll(z, t) d2D(z, t)
= PO (2)

dz2 dt2 ‘

with

D = d, (3)

and c given by (1). A representation of the electric field

in the disturbed medium is then taken in the form

E(z, t) = Eoe-if@’-~”lP(tilt – klz), (4)

where u is the angular frequency of the applied signal, k

is the macroscopic wavenurnber of the wave propagating

in the z direction, al and kl are, respectively, the ‘fpump”

angular frequency and propagation wavenumber, and P

represents a periodic function of its argument with a

period of 27r. The notation employed in (4) follows that

of Simon. The objective in this development is to ob-

tain a rigorous dispersion relation expressing k as a

function of a and the parameters of the medium.

The right-hand side of (4) is essentially a Floquet

representation of the electric field in the moving co-

ordinate system, Let us next expand P into a Fourier

series, i.e.,

n=—.

When the series (5) is substituted, along with (4), (1)

and (3), into (2), one obtains the following three-term

recursion formula for the desired propagation wave-

number k and the unknown electric-field space-har-

monic amplitudes an:

El ~i
— a.+l + D,, a~ + — a,,.l = O, (6)
2eo 2to

where

‘n= ‘-(ix::::) (7)

72 = 0, + 1,+2,...;
——

A?o= (l)<eopo.

Relations (6) and (7) are identical with Simon’s rela-

tion (10), except for his 7r2/b2 term which he drops soon

after. Simon then solves (6) and (7) by a perturbation

technique which includes only three space harmonics.

We present below a rigorous solution which takes into

account all of the space harmonics. Relations (6) and

(7) are also given by Slater2 as (20); while Slater then

also proposes a perturbation approach employing only

three space harmonics, n = O, + 1, he does not continue

with the detailed analysis and interpretation presented

by Simon.

In a recent paper,3 the writers have treated, by a

technique commonly employed in the solution of

Mathieu-type equations, an infinite set of equations

very similar to (6) but with a different expression for

D.. A rigorous solution was obtained in the form of a

rapidly convergent continued fraction. FolIowing the

2 J. C. SIater, “Interaction of waves in cry-stals, ” Rev. Mod. Phys.,
vol. 30, p. 203; January, 1958.

3 A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-
modulated reactance surfaces, ” IRE TRANS. ON ANTENNM AND
PROPAGATIOiW, Y-01. AP-7, pp. S201–S208; December, 1959.
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derivation presel]ted there, we obtain frc)lm (6] the

equation:

()
[

1
Do – ~ –-

1

(,,/2,”)’ + — (qi2,”)’

1

=0

~l– — II, –
(q/260)’ ~_ _ (el/’2@)2

D, –
D:, –,. D-z –...

for the propagation wavenumber k. The small parame-

ter el/2~0 is explicitly exhibited in (8); D,, is defined by

(7). When (8) is taken to the first order only, it is

identical with Simon’s relation (15). Expression (8) is

rigorous and is rapidly convergent almost everywhere,

so that k can be computed to any desired degree of

accuracy.

The corresponding electric-field amplitudes can be

shown to be given rigorously by:

an – (6,/26”)

ar,–l (E,/261))’ ‘
D. –

D.+, - “1/2’0)2
Dn.,.z – . . .

am
—

a.+l

and

– (6,/24

(CJ26))’
D. –

~,_, _ (W’2@)2

Dn_z–...

– 1, (10)

an an lzn_~ al
.— —.—— . .._. ?2>1 (11)

aO an_l a,L_2 a.

a,, am an+l a_ I

—= —.— . ..—
J }2<—1. (12)

a“ a.+l a,,+z a“

Hence, after k is found from (8), the D. values are

known and the amplitude ratios, relative to a“, say,

are obtained from relations (9]–(12). TIO the first

order in. ~1/2e0, (9) and (10) reduce to

al c1 1
—_—— —

a. 2e0 DI
(13)

a_l cl 1
—.—— — (14’)

a“ 2E0 D_l ‘

in agreement with (14) and (12), respectively, of Simon.
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(8)

SUFFICIENCY CONDITION FOR A SPACE-HARMONIC FORM

OF SOLUTION

It can be shown4 from the theory of three-term re-

cursion formulas, that if the condition

]Dr,l >; (1.5)

is satisfied for all n > N, then relations (8) and (9)–(12)

converge absolutely and uniformly. A space-harmonic

representation of the solution will also converge pro-

vided that (15) is satisfied. If (15) is not satisfied, the

convergence is not assured, and a perturbation solution

in such a range is, at the ver}- least, highly suspect.

A physical interpretation of condition (15) is ob-

tained by considering it in the limit of high n. Thus,

asn+w,

[Dm[ =11- (::)1 = 11-(:),21, (16)

where VI =col/kl and v“ =w/kO are the phase velocities of

the progressive disturbance (pump wave) and the un-

perturbed electromagnetic wave, respectively. Condi-

tion (1[5) then becomes

(1’7)

and is satisfied except when the two velocities are al-

most equal. Simon’s triple-root case corresponds

exactly to the equality of the two velocities, and thus

violates (17). This case is discussed further below.

DOITBLE-ROOT C.iSES

Simon’s double-root cases correspond physically to

stop bands, Bragg reflection situations, or parametric

conversion regions, depending on the point of view

adopted. Only the two lowest stop bands are considered,

differing in that for one band the progressive disturb-

ance and the electronlagnetic wave propagate in op-

posite directions, while for the other they travel in the

same direction, corresponding to parametric up-con-

version and down-conversion, respectively.

4 J. Meixner and F. LIT. Schafke, “Mathieusche Fun!itionen und
Sphir-oidfulktionen,” Springer Verlag, Berlin, Germany, pp. 89–93;
1954.
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For the up-conversion case, the following relation

holds :

kl
— . –2–Z. (18)
ko u

Substituting (18) into the sufficiency condition (15) for

n+ m , one obtains

(19)

indicating that one should avoid values of Q/col that

are too small. This conclusion is also borne out in

Simon’s (18), which loses its meaning when w/wl be-

comes extremely small.

For the down-conversion case, one finds the relation

ko &l

so that condition (15) becomes

(20)

(21)

As above, one should avoid values of w/wl that are too

small but now, in addition, a region around u =w1.

These results are again in accord with Simon’s (29)-(32)

which become meaningless in these extremes. The

o =CJl region may also be seen via (20) to be a special

case of the triple-root case, which is considered below.

The application of condition (15) to the double-root

cases bears out the validity of the solutions to these

cases. The same considerations apply to the higher-

order stop bands, about which we can briefly comment

in view of the availability of the rigorous solutions (8)–

(12), The mth-order stop band occurs when Dm becomes

small, and the solution is characterized by the presence

of two principal space harmonics whose amplitudes ao

and am are both of the same order. Upon inspection of

(9) and (1 1), one sees that

am (– l)q6,/260)~
—~

Dm.Dm_,.Dm–, . . . D, ‘
(22)

ao

since all values of D. except that for n = m are not

small. Outside of the stop band, the ratio a~/ao is small;

it becomes of the order of unity only when Dm becomes

sufficiently small. One can see from (9] that this occurs

only over a limited range of u; one may conclude from

this that the width of the stop band in u is proportional

to (el/2co)~, and that for high values of m the stop

bands become very narrow.

It may be added that Epsztein has independently

recognized the parametric up-conversion behavior as-

sociated with such stop bands and has proposed5 a de-

vice for producing millimeter waves based on this prin-

6 B. Epsztein, “Millimeter Waves, ” Microwave Res. Inst., Poly-
technic Inst. of Brooklyn, N. Y., Rept. No. 840–60, pp. 8–9; July 25,
1win

ciple. He has suggested the use of a higher-order stop

band so that the frequency conversion ratio may be

large, but this introduces practical difficulties because

of the very narrow stop band that would be present.

TRIPLE-ROOT CASE

Simon’s perturbation solution assumes the existence

of only three space harmonics, and his triple-root case

corresponds to that condition for which all three of his

space harmonics must be considered, since none of them

is small in amplitude. If the complete solution involving

an infinite number of space harmonics is considered, it

is seen that the triple-root condition

kl kO
—.—

ml GJ
(23)

implies that none of the infinite number of space har-

monics is small in amplitude, and that therefore all of

them must be considered. This statement becomes

clear by considering (6) for any n, and realizing that

condition (23) results in every D. being small when solu-

tions in the range k near k. are examined. Such a space-

harmonic expansion may thus result in a divergent

total field. Any solution that includes only three of the

space harmonics, and ignores the non-neglectable in-

finite remainder, must evidently be highly suspect.

From (16) and (17) it is seen that relation (23) clearly

violates the sufficiency condition for a space-harmonic

form of solution, and that, as Simon recognizes (23)

corresponds to equal propagation velocities for the un-

perturbed electromagnetic wave and the progressive

disturbance. As is shown in the Appendix, this effect is

analogous to that of a material body passing through

the sonic barrier.

The singular nature of the total field is also brought

out by considering the asymptotic behavior of the

space-harmonic amplitudes. In the range for which (17)

is violated, (6) becomes for sufficiently high n

so that

where

cos O = ~ L)m, (26)
c1

and O is real. Thus, the sum of the squares of the absolute

values of the coefficients a. need not converge. More de-

tailed considerations are presented in the Appendix,

where it is shown that a space-harmonic form of ex-

pansion will diverge in this range for real values of k,

all of which are solutions of (8) or an equivalent de-

terminantal equation.

Further physical and mathematical insight into the

singular nature of the solution is afforded by considering
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certain properties of the original differential equation.

In the Appendix, it is shown via a transformation to a

moving coordinate system that a singularity in the dif-

ferential equation occurs whenever the phase velocity

VI of the moving disturbance is equal to the local phase

velocity VL of the electromagnetic wave in the disturbed

medium. This equality, which is thus a condition for the

appearance of a singularity in the equation, is exactly

the complement of (17), which is the sufficiency condi-

tion for the solution to be convergent. It ;S also seen,

that if this equality is satisfied there will exist values of

the phase u of the progressive disturbance for which VI

is ‘(supersonic” or “subsonic” with respect to VL. The

Appendix also shows that in the moving coordinate

system solutions of the differential equation admit dis-

The convergence of the above-mentioned sum can be

determined from the asymptotic behavior of the co-

efficients a.. To this end, let us write a general linear

homogeneous difference equation of the nth order in

the form

$ pi(*)24z + i) = 0. (27)

We shall assume that the coefficients pi(x) admit the

following expansion, valid for sufficiently large values

of x:

p,(v) = pi@) + p,(l)$-y,(’)rz + . . ., (28)

If now the so-called characteristic equation

continuities in d2E/da2 across sonic lines, i.e., lines of p,,(o)j~ + pn_lmt@l + . . . + plmt + ].(O == o (29)
constant u for which VL = vI. on each side of such a sonic

line a clifferent solution will exist in general, neither of

which can be analytically continued across the sonic

line.

It is clear from the above discussion that Simon’s

harmonic expansion treatment of his triple-root case

has no meaning in this context. We have not attempted

in this paper to consider under what circumstances, if

any, his treatment may be of value.

We have attempted here to enhance the value of

Simon’s interesting paper by presenting a rigorous solu-

tion and a sufficiency condition for the convergence of

the solution, and by applying this condition to indicate

that the treatment of Simon’s triple-root case is in error.

possesses n different roots t,, 1< i <n, then there exist n

independent solutions of the difference equation (27)

which are asymptotically represented in the formr

One determines the characteristic exponent ~j and the

coefficients bj by substitution of (30) into (27) and

equating the sum of the coefficients of equal powers of

x to zero.

Let us apply the above general result to the specific

equation

APPENDIX 2E0
a~+l + —— D,,a~ + a.–l = 0, ?2 = 0,*1,..., (31)

A, Convergence of the S@ace-Harmonic Expansion cl

We prove below that in the range with D. expressed in the form (valid for n sufficiently

large)

–l<fi Dm <l,
c1

Dn=Dm+~+~+.... (32)
?1 9$2

where

D. = lim Dn,
n+ m

there exists for any real value of k a solution of the dif-

ference equation (6) for which the infinite determinant

of the system vanishes, and for which the sum

.

n,=-.

of the magnitude squared of the coefficients of the space-

hw-mollic expansion diverges.

The existence of solutions of (6), consistent with the

vanishing of the infinite determinant, for every real

value of k can be demonstrated by a theorem of Weyl.G

The possible existence of corresponding solutions Vvlth

complex k was not investigated.

e F. Riesz and B. S. iVagy, “Functional Analysis,” Frederick
Ungar Co., New York, N. Y., p. 367; 1955.

The characteristic equation (29) now becomes

t’+2DWt+l =0,
cl

(33)

which has solutions

t1,2 = — e*Ta7 (34)

with cos 0 = (eO/el)D~, as in (26). Hence, one finds that

Clr(j - tj’’lt ’! ( )l+~+~j+ . . . , j=l,2. (35)
n ~L2

7 G. D. Birkhoff, “General theory of linear difference equations ‘r
Tranz. A in. Mat?~. SoG., vol. 12, pp. 243-284; 1911.

J. Horn, “Zur Theorie der linearen Diffei-mzengleichungeu, ”
Math. Ann., vol. 53, pp. 177–192; 1900. Also, “Uber das Verhalten
der Iut.egrale Iinearer Differenzen- und Differentialgleichungen fur
grosse W’erte der Veriinderlichen, ” J. Reine angew. Moth., vol. 138,.
pp. 159–191; 1910.
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Substituting (35) into (31), we obtain

-(,)-l(l-+)’’(l+;(l::)+ j=~. (36)

lZ

Equating to zero the coefficient of (l/n)”, one has

which agrees with (26) while equating to zero the

coefficient of (l/n) 1, and using (34), one obtains the

relation

d,
t’1,2=T_j —

2sin O”
(37)

Therefore, it follows from (35) that

(an)1,2 = (- l)~#@eF7dI h 7L/2 sin o[1+0(31’38)
In the range of parameters for which

–l<~D. <1,
~1

(39)

i.e., for which 6 is real, and for d real, which corresponds

to k real, as seen from (7) and (32), one finds

It is clear that under these conditions the sum

~~w I ‘.12

does not converge. This follows since the right-hand side

of (40) is square-summable, and hence the left-hand side

must be also. However, because the second term on the

left-hand side is not square-surnmable, a. cannot be.

The divergence of this sum indicates the presence of a

non-square-integrable singularity in the solution of the

differential equation and, therefore, does not permit a

harmonic expansion in this range.

B. DiJerent ial Equation Considerations and Sowic Lines

Further physical and mathematical insight into

the singular nature of the solution in the range

(eo/el) I D~ ] <1 is afforded by considering the always

hyperbolic differential equation

&E(z, t)
– ~o~ [A W(2, t)] = o, (41)

dz~

where 6(z, t) is given by (l). Let us introduce the fol -

]owing transformation of variables appropriate to a

movin~ coordinate system:

u = klz — tilt; if = [. (42)

One obtains from (41) and (42) the transformed dif-

ferential equation

— wowl~ CosU-E = 0. (43)

Upon recognizing that

al
~1=—

k,

and

a 1
~o=—=

k, 4POZ

are the phase velocities of the progressive disturbance

(pump wave) and the electromagnetic wave in the

unperturbed medium, respectively, and that the local

phase velocit~- of the electromagnetic wave in the

disturbed medium is

(44)

(43) can be rewritten in the form

(1-:&) $+2As

11 d’li 1

[ 1-dE
— — 2Z)123 —

k,’ v~z(u) dt” du ZIL2(ZL) c%

+2H&l$-v’2(&-3E=0’”)

In the range

(46)

for which the sufficiency condition is not satisfied, there

will always exist a real value u = u, for which the co-
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efficient of &E/du2 in (43) vanishes, i.e.,

k,” – powol~ — ‘oe’o;’cos’’o=’’’(’-t*i)=o“’)
The existence of real u o in this range is seen Iby rewriting

(47) as

Cos’’o=;[%-’l’
hence, Z/. is real i{

or

en

cl

which is identical with

DJ <1,

(46).

(48)

(49)

The vanishing of the coefficient of #E/du2, however,

gives rise to a singularity of the differential equation

(45). The singularity arises because even though the

values of E and 8E/8u are given on the line u = ZLO for

all t’,the values of rYE/d ZL2are not determined by the

differential equation (45), and rYE/r3zP may jump across

the line IL = uO. Hence, the “sonic lines, ” for which

ZJ12=V1,2(UO), are singular lines of the differential equa-

tion (45). On each side of such a sonic line a different

solution will exist, neither of which can be analytically

continued across the sonic Iiue. The sufficiency condi-

tion ( 17), therefore, eliminates the occurrence of such a

sillgular-ity and guarantees the existence of square-

integrablc solutions of (45).
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A New Broadband Absorption Modulator for Rapid

Switching of Microwave Power*

FRANK REGGIA~, SENIOIR MEMBER, IRE

Summary-This paper describes a new technique for obtaining

a broad-band absorption modulator for high-speed switching or am-

plitude modulation of microwave power. This ferrite modulator, an

outgrowth of the longitudinal-field rectangular-waveguide phase

shlfter,l has electrical characteristics particularly desirable in a

microwave switch. These include a zero-field insertion loss of ap-

proximately 0.5 db in the ON state, an isolation of greater than 60

db in tbe OFF state which is nearly independent of the magnetic

control field in this state, and a nearly matched input impedance for

all values of applied field. These electrical characteristics are nearly

constant over a 30 per cent bandwidth at X band. Also, it is possible

to design the amplitude modulator to have negligible phase shift at

the desired operating frequency.

Other characteristics of this ferrite modulator include small

physical size, magnetic control fields of less than 50 oersteds, operat-

ing temperatures up to 150”C, and a capability of less than one ~sec

switchhr g time.

* Received by the PGMTT, Ibiarch 9, 1961 ; revised manuscript
received, May 3, 1961.

t Diamond Ordnance Fuze Labs., Washington, D. C.
‘ F. Reg-gia and E. G. Spencer, “A new technique ;n ferrite phase-

shifting for beam scanning of microwa~, e antenn as,” PE{OC, IRE, vol.
45, pp. 1510–1517; November, 1957.

INTRODUCTION

I

N its most general form, the relationship between

the induced RF flux density h and the internal R.F

magnetic field h in all arbitrarily magnetized poly -

crysta.lli ne-ferrite medium is a permeability tensor

given by

From this expression, Rado2 has shown that for an un-

saturated ferrite medium at microwave freq~uencies and

a dc ]nagnetic field applied in the z direction, the per-

meability tensor reduces to

r

–jK o
1[K]= +;K jJ o ,

1 1

(2)

o 0 /Jz

2 G. T. Rado, “Electromagnetic characterization o{ ferromagnetic
media, ” IRE TR~NS. ON ANTEN~.M AND PROPAGATION, vol. AP-4, pp.
512-525; July, 1956,


