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CONCLUSIONS

This work has demonstrated the feasibility of the V-
line as a surface-wave guiding structure supporting
higher-order hybrid modes of propagation. Various
characteristics of such modes have been discussed
qualitatively on the basis of algebraic solutions of the
characteristic equation and, more quantitatively, on
the basis of numerical solutions obtained for a variety
of orders and dielectric constants.

Experimental confirmation of the theory has been
successful qualitatively and quantitatively for the
second-order principal mode. Verification has been ob-
tained for the exclusion of the transverse electric mode
from the V-line with insulated plates, thereby confirm-
ing that it is the high-order hybrid modes rather than
the sirapler low-order transverse modes that are of
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interest for operation with disjoint plates. The evita-
bility of joining the plates affords distinct advantages
in launching and detecting the modes and in the versa-
tility of the V-line.

The V-line configuration with separated plates or
truncated apex appears well suited to convenient elec-
tronic control of propagation characteristics through the
use of a ferroelectric binding medium. The plates serve
as supports for the structure, as image surfaces for the
guided wave, and as electrodes for the application of
bias potentials. The V-line is distinguished from some
other configurations that permit bias fields across a
binding medium in that it confines the propagating or
radiating fields to one side of the dielectric. The region
of the apex remains available for auxiliary structures,
such as exciting or detecting mechanisms.

Wave Propagation in a Medium with a
Progressive Sinusoidal Disturbance®

A. HESSELT, MEMBER, IRE, AND A. A. OLINERTY, FELLOW, IRE

Summary—A recent paper by Simon derives approximate re-
sults, employing only three space harmonics, for the propagation
characteristics of an electromagnetic wave traveling in a medium
possessing a progressive sinusoidal disturbance. A rigorous result is
presented here for this same problem, taking into account all of the
space harmonics; also, a sufficiency condition for the convergence
of this solution is discussed. This sufficiency condition is not satisfied
in a particular case treated by Simon. It is shown that his analysis of
this case is in error, and that the total field is singular there. The
singular nature of the field is associated with “supersonic” effects in
the medium containing the progressive disturbance.

InTrRODUCTION

STIMULATING, recent paper! by Simon pre-
A sents solutions for the propagation characteris-

tics of an electromagnetic wave traveling in a
medium possessing a progressive sinusoidal disturbance.
This disturbance is expressed in terms of a time-varying
dielectric constant, in the form

€ = ¢ + € cos (wit — F12), (1)
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mand.
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1 J. C. Simon, “Action of a progressive disturbance on a guided
electromagnetic wave,” IRE TRrRaNs. oN MICROWAVE THEORY AND
TrcHNIQUES, vol. MTT-8, pp. 18-29; January, 1960.

using the notation employed by Simon. The electro-
magnetic field is then expanded in terms of spatial har-
monics and a relation is found between the amplitudes
of these space harmonics. This relation is essentially a
system of infinite homogeneous equations with an in-
finite number of unknowns. Simon then points out that
in problems of interest ¢ is very small, and that a rigor-
ous solution to this system of equations is not simple to
obtain. He, therefore, adopts a perturbation approach,
and retains only the lowest three of the infinite num-
ber of space harmonics. With this approximation, he
obtains a determinantal equation for the propagation
constants, solves this equation for several interesting
special cases, and then obtains the corresponding space-
harmonic amplitudes.

A major contribution of Simon’s paper lies in the
stress he places on the interrelation between physical
concepts in different disciplines. For example, while it
has long been known that a stop band for electromag-
netic waves in a periodic structure corresponds to Bragg
reflection in crystals, Simon relates the Doppler effect
produced in a stop band associated with a moving dis-
turbance to parametric amplification phenomena. The
conditions for both up-conversion and down-conversion
are considered in some detail, and approximate expres-
sions are presented for the propagation constants and
the fields. An additional so-called “triple root” case is
also treated in some detail, but the results are of ques-
tionable value, for reasons presented below.
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In this note we wish to:

1) present a rigorous result to the problem treated
by Simon, taking into account all of the space
harmonics, rather than only three,

2) present a “sufficiency condition” between the vari-
ous physical quantities which, if satisfied, insures
the wvalidity of any space-harmonic type of solu-
tion, and

3) apply this “sufficiency condition” to the various
cases considered by Simon, and indicate the ranges
of parameter values to be excluded from his solu-
tions. Particular stress is laid on his triple root
case, which does #zot satisfy this condition. Both
physical and mathematical reasoning is presented
in verification.

Ricorous REsuLT

Over most of the range of frequency and wavenum-
ber values, the perturbation solution of Simon is com-
pletely adequate for very small values of €. In particu-
lar regions, however, the perturbation solution is in-
valid. For example, as pointed out by Simon, his solu-
tion cannot apply to regions corresponding to the
higher-order stop bands, or Bragg reflections. It is de-
sirable, therefore, to have available a rigorous solution.

Let us first review, for the sake of clarity, the basic
steps involved in the development of such a rigorous
solution. We are concerned with the propagation of
electromagnetic waves in an infinite medium possessing
a fixed permeability po and a time-varying dielectric
constant e(z, £) of the form given by (1). Such a medium
is created by the presence of a traveling disturbance;
examples of the source of such a disturbance could be
an electromagnetic “pump” wave or an acoustic wave,
the latter constituting an example of microwave-phonon
interaction. The assumption (1) regarding the proper-
ties of the medium thus linearizes the basically nonlin-
ear interaction problem.

Let us restrict the development below to TEM mode
propagation in a direction parallel or antiparallel to the
moving disturbance. (Simon initially considers a
slightly more general case, but he immediately there-
after reduces his relations to those for TEM modes.)
Under these conditions, the wave equation for the elec-
tric field E(z, t) becomes

2E(z, 1) 92D(z, 1)
o e

(2)
with
D = el (3)

and e given by (1). A representation of the electric field
in the disturbed medium is then taken in the form

E(Z, t) = Eoe‘f'(‘“’t_kz)P(wlt - klz), (4)
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where w is the angular frequency of the applied signal, %
is the macroscopic wavenumber of the wave propagating
in the z direction, wy and %y are, respectively, the “pump”
angular frequency and propagation wavenumber, and P
represents a periodic function of its argument with a
period of 2w. The notation employed in (4) follows that
of Simon. The objective in this development is to ob-
tain a rigorous dispersion relation expressing k2 as a
function of w and the parameters of the medium.

The right-hand side of (4) is essentially a Floquet
representation of the electric field in the moving co-
ordinate system. Let us next expand P into a Fourier
series, 7.e.,

Plwid — kiz) = Y, apein@ =k, ®)

N=—00

When the series (5) is substituted, along with (4), (1)
and (3), into (2), one obtains the following three-term
recursion formula for the desired propagation wave-
number % and the unknown electric-field space-har-
monic amplitudes a,:

€1 €1
— Qpt1 + Dndn + — Gn-1 = 07 (6)
2eq €0
where
w\2/k 4 nk\?
(. o
ko/ \w + nw;
n=20,+1, +£2, - ko = w\/€o fho-

Relations (6) and (7) are identical with Simon’s rela-
tion (10), except for his #2/b? term which he drops soon
after. Simon then solves (6) and (7) by a perturbation
technique which includes only three space harmonics.
We present below a rigorous solution which takes into
account all of the space harmonics. Relations (6) and
(7) are also given by Slater? as (20); while Slater then
also proposes a perturbation approach employing only
three space harmonics, #=0, +1, he does not continue
with the detailed analysis and interpretation presented
by Simon.

In a recent paper,® the writers have treated, by a
technique commonly employed in the solution of
Mathieu-type equations, an infinite set of equations
very similar to (6) but with a different expression for
D,. A rigorous solution was obtained in the form of a
rapidly convergent continued fraction. Following the

2 J. C. Slater, “Interaction of waves in crystals,” Rev. Mod. Phys.,
vol. 30, p. 203; January, 1958.

3 A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-
modulated reactance surfaces,” IRE TRANS. ON ANTENNAS AND
PRrOPAGATION, vol. AP-7, pp. S201-5208; December, 1959.
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derivation presented there, we obtain {rom (6) the
ecquation:

Hessel and Oliner: Wave Propagation in a Medium with a Sinusoidal Disturbance

339

e \? i 1
2~ () R D Ve - ®
(e1/2€0)” (€1/2€0)?
2—])3__... 72~—D_3—--~

for the propagation wavenumber k. The small parame-
ter €/2¢ is explicitly exhibited in (8); D, is defined by
(7). When (8) is taken to the first order only, it is
identical with Simon’s relation (15). Expression (8) is
rigorous and is rapidly convergent almost everywhere,
so that & can be computed to any desired degree of
accuracy.

The corresponding electric-field amplitudes can be
shown to be given rigorously by:

An —(61/250) > 1 (9)
- = ) n -
“t D (61/2:0)/22 )?
€1/ L€y
Dpypr————
+1 Dpsg— « o -
a, - 2
_ w29 <oy, o
Antt D, — (e1/2€0)®
byl
and
an Ay An—1 ai
o B n>1 (11)
ag An—1 Gp—s Qo
a, n n a—
Gu e 2 i< -t (12)
() Attt Guie ao

Hence, after k is found from (8), the D, values are
known and the amplitude ratios, relative to a,, say,
are obtained from relations (9)-(12). To the first
order in €;/2¢y, (9) and (10) reduce to

a1 €1 1

— = — — (13)
agy 260 D1

_ 1
Gt & , (14)
ay 260 D_1

in agreement with (14) and (12), respectively, of Simon.

SUFFICIENCY CONDITION FOR A SPACE-HARMONIC ForRM
OF SOLUTION

It can be shown? from the theory of three-term re-
cursion formulas, that if the condition

€1

€0

| D, (15)

is satisfied for all # >V, then relations (8) and (9)-(12)
converge absolutely and uniformly. A space-harmonic
representation of the solution will also converge pro-
vided that (15) is satisfied. If (15) is not satisfied, the
convergence is not assured, and a perturbation solution
in such a range is, at the very least, highly suspect.

A physical interpretation of condition (15) is ob-
tained by considering it in the limit of high #. Thus,

as n— o,
k1o \? 20\ ?
o o AR Al 5 A
ko Wi 1
where v, =w1/k; and vy =w/k, are the phase velocities of
the progressive disturbance (pump wave) and the un-

perturbed electromagnetic wave, respectively. Condi-
tion (15) then becomes

(i) 2 €1
O
U1 (]

and is satisfied except when the two velocities are al-
most equal. Simon's triple-root case corresponds
exactly to the equality of the two velocities, and thus
violates (17). This case is discussed further below.

| D] =

(17)

DouBLE-RooTt CasEs

Simon’s double-root cases correspond physically to
stop bands, Bragg reflection situations, or parametric
conversion regions, depending on the point of view
adopted. Only the two lowest stop bands are considered,
differing in that for one band the progressive disturb-
ance and the electromagnetic wave propagate in op-
posite directions, while for the other they travel in the
same direction, corresponding to parametric up-con-
version and down-conversion, respectively.

1 J, Meixner and F. W, Schifke, “Mathieusche Funktionen und
Sphdroidfunktionen,” Springer Verlag, Berlin, Germany, pp. 89-93;
1954,
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For the up-conversion case, the following relation
holds:

k w
S I (18)
ko w
Substituting (18) into the sufficiency condition (15) for
n— oo, one obtains

w w €1
d—{—+1)>—

w1 \Ww1 €0
indicating that one should avoid values of w/w; that
are too small. This conclusion is also borne out in
Simon’s (18), which loses its meaning when w/w; be-

comes extremely small.
For the down-conversion case, one finds the relation

(19)

k w
Zo-2, (20)
ko ®
so that condition (15) becomes
w w €1
4———=1|{>—" (21)
Wilwi €

As above, one should avoid values of w/w; that are too
small but now, in addition, a region around w=uw;.
These results are again in accord with Simon’s (29)-(32)
which become meaningless in these extremes. The
w=w; region may also be seen via (20) to be a special
case of the triple-root case, which is considered below.

The application of condition (15) to the double-root
cases bears out the validity of the solutions to these
cases. The same considerations apply to the higher-
order stop bands, about which we can briefly comment
in view of the availability of the rigorous solutions (8)-
(12). The mth-order stop band occurs when D,, becomes
small, and the solution is characterized by the presence
of two principal space harmonics whose amplitudes a,
and @., are both of the same order. Upon inspection of
(9) and (11), one sees that

dn (=1D)m(er/2e0)™
ao Dy DyyDys -+ - Dy

) (22)

since all values of D, except that for #=m are not
small. Outside of the stop band, the ratio a./ao is small;
it becomes of the order of unity only when D,, becomes
sufficiently small. One can see from (9) that this occurs
only over a limited range of w; one may conclude from
this that the width of the stop band in w is proportional
to (e&1/2¢€)™, and that for high values of m the stop
bands become very narrow.

It may be added that Epsztein has independently
recognized the parametric up-conversion behavior as-
sociated with such stop bands and has proposed® a de-
vice for producing millimeter waves based on this prin-

5 B. Epsztein, “Millimeter Waves,” Microwave Res. Inst., Poly-
technic Inst. of Brooklyn, N. Y., Rept. No. 840-60, pp. 8-9; July 25,
1960.
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ciple. He has suggested the use of a higher-order stop
band so that the frequency conversion ratio may be
large, but this introduces practical difficulties because
of the very narrow stop band that would be present.

TrirpLE-RooT CASE

Simon’s perturbation solution assumes the existence
of only three space harmonics, and his triple-root case
corresponds to that condition for which all three of his
space harmonics must be considered, since none of them
is small in amplitude. 1f the complete solution involving
an infinite number of space harmonics is considered, it
is seen that the triple-root condition

E = ﬁ (23)

[OF) w

implies that none of the infinite number of space har-
monics is small in amplitude, and that therefore all of
them must be considered. This statement becomes
clear by considering (6) for any #, and realizing that
condition (23) results in every D, being small when solu-
tions in the range k near &, are examined. Such a space-
harmonic expansion may thus result in a divergent
total field. Any solution that includes only three of the
space harmonics, and ignores the non-neglectable in-
finite remainder, must evidently be highly suspect.

From (16) and (17) itis seen that relation (23) clearly
violates the sufficiency condition for a space-harmonic
form of solution, and that, as Simon recognizes (23)
corresponds to equal propagation velocities for the un-
perturbed electromagnetic wave and the progressive
disturbance. As is shown in the Appendix, this effect is
analogous to that of a material body passing through
the sonic barrier.

The singular nature of the total field is also brought
out by considering the asymptotic behavior of the
space-harmonic amplitudes. In the range for which (17)
is violated, (6) becomes for sufficiently high »

€1 €1

— Qpt1 + Dwan + — g1 = 0) (24)
260 260
so that
@n ~ (—1)retom?, (25)
where
€0
cosf = — D,, (26)

€1

and 0 is real. Thus, the sum of the squares of the absolute
values of the coefficients ¢, need not converge. More de-
tailed considerations are presented in the Appendix,
where it is shown that a space-harmonic form of ex-
pansion will diverge in this range for real values of %,
all of which are solutions of (8) or an equivalent de-
terminantal equation.

Further physical and mathematical insight into the
singular nature of the solution is afforded by considering
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certain properties of the original differential equation.
In the Appendix, it is shown via a transformation to a
moving coordinate system that a singularity in the dif-
ferential equation occurs whenever the phase velocity
v, of the moving disturbance is equal to the local phase
velocity vy, of the electromagnetic wave in the disturbed
medium. This equality, which is thus a condition for the
appearance of a singularity in the equation, is exactly
the complement of (17), which is the sufficiency condi-
tion for the solution to be convergent. It is also seen,
that if this equality is satisfied there will exist values of
the phase # of the progressive disturbance for which »
is “supersonic” or “subsonic” with respect to vz. The
Appendix also shows that in the moving coordinate
system solutions of the differential equation admit dis-
continuities in 92E/du* across sonic lines, i.e., lines of
constant # for which v, =#.. On each side of such a sonic
line a different solution will exist in general, neither of
which can be analytically continued across the sonic
line.

It is clear from the above discussion that Simon's
harmonic expansion treatment of his triple-root case
has no meaning in this context. We have not attempted
in this paper to consider under what circumstances, if
any, his treatment may be of value.

We have attempted here to enhance the value of
Simon's interesting paper by presenting a rigorous solu-
tion and a sufficiency condition for the convergence of
the solution, and by applying this condition to indicate
that the treatment of Simon’s triple-root case is in error.

APPENDIX
A. Convergence of the Space-Harmonic Expansion
We prove below that in the range
€
-1 <—D, <1,
€1
where

D, = lim D,,

n— 0

there exists for any real value of & a solution of the dif-
ference equation (6) for which the infinite determinant
of the system vanishes, and for which the sum

> la

Nn=—0c0

2
H

of the magnitude squared of the coefficients of the space-
harmonic expansion diverges.

The existence of solutions of (6), consistent with the
vanishing of the infinite determinant, for every real
value of k£ can be demonstrated by a theorem of Weyl.®
The possible existence of corresponding solutions with
complex k& was not investigated.

6 F, Riesz and B. S. Nagy, “Functional Analysis,” Frederick
Ungar Co., New York, N, Y., p. 367; 1955,
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The convergence of the above-mentioned sum can be
determined from the asymptotic behavior of the co-
efficients @,. To this end, let us write a general linear
homogeneous difference equation of the nth order in
the form

> pi()u(x 4+ 7) = 0. 27)
1=0
We shall assume that the coefficients p;(x) admit the

following expansion, valid for sufficiently large values
of x:

Pux) = pi® + p,Dalp, @2 4 oL (28)
If now the so-called characteristic equation
a8 A pua @it + + 21+ po@ =0 (29)

possesses 7 different roots ¢,, 1 <7<, then there exist #
independent solutions of the difference equation (27)
which are asymptotically represented in the form?

bl] b2]
y() ~ <;,->w,<1 ==t ) 1</ < n (30)
X X

One determines the characteristic exponent 7; and the
coefficients b; by substitution of (30) into (27) and
equating the sum of the coefficients of equal powers of
x to zero.

Let us apply the above general result to the specific
equation

260
pt1 '[" — -Dna'n + Qp—1 = O;
€1

n=0,+1,---, (31)

with D, expressed in the form (valid for » sufficiently
large)

1 d‘l
Dp=Dp+—+—+ (32)
noon
The characteristic equation (29) now becomes
2e
£ D41 =0, (33)
€1
which has solutions
e = — et (34)

with cos 0 =(e/€1) Do, as in (26). Hence, one finds that

bi; by
ar/j’\’fj"llr:'(l‘l‘*l*j’i‘_zj‘i“"'), i=1,2. (35
7 e

7 G. D. Birkhoff, “General theory of linear difference equations,”
Trans. Am. Math. Soc., vol. 12, pp. 243-284; 1911,

J. Horn, “Zur Theorie der linearen Differenzengleichungen,”
Math. Ann., vol. 53, pp. 177-192; 1900. Also, “Uber das Verhalten
der Integrale linearer Differenzen- und Differentialgleichungen fiir
grosse Werte der Verdnderlichen,” J. Reine angew. Math., vol. 138,
pp. 159-191; 1910.
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Substituting (35) into (31), we obtain

1 7y bl]
—zj<1+-> Tt

n

I

- (f]-)—1<1 —i>r1 4+ .\ =0, (36)

” 1
7 <1 —_—
i

Equating to zero the coefficient of (1/%)°, one has

€0
cos 8 = — D,
€1

which agrees with (26) while equating to zero the
coefficient of (1/#)', and using (34), one obtains the
relation

di

2sing

ri2= FJ 37)

Therefore, it {ollows from (33) that

1
<dn)1,2 — (_ l)neimﬂeiﬂh Inn/2 sin 0 [1 + 0< >:| . (38)

n
In the range of parameters for which

€0
—1<— D, <1,

€1

(39)

i.e., for which 8 is real, and for d real, which corresponds
to k real, as seen from (7) and (32), one finds

_ ) 1
Ay — (_ l)neij[n€+(d1 In »/2 sin 6)] =0 <_> . (40)

7
It is clear that under these conditions the sum

> la

n=—00

2

does not converge. This follows since the right-hand side
of (40) is square-summable, and hence the left-hand side
must be also. However, because the second term on the
left-hand side is not square-summable, @, cannot be.
The divergence of this sum indicates the presence of a
non-square-integrable singularity in the solution of the
differential equation and, therefore, does not permit a
harmonic expansion in this range.

B. Differential Equation Considerations and Sonic Lines

Further physical and mathematical insight into
the singular nature of the solution in the range
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(eo/el)lDw[ <1 is afforded by considering the always
hyperbolic differential equation

92F(z, 1) 9?

__‘62;'— — #0;2— [6(27 t)E(Za t)] = OJ (41)
where €(z, £) is given by (1). Let us introduce the fol-
lowing transformation of variables appropriate to a

moving coordinate system:
u = kiz — wil; =1

(42)

One obtains from (41) and (42) the transformed dif-
ferential equation

3*E(u, 1)
(k12 — poeowr? — poerw:? cos #) —————
01t?
+ 201 (uoen + )62E (moeo + )02E
w1l o€ Mo€l COS U — {Mo€o Ho€r COS ) ——
’ Judr ' a2
. OE Y7
~+ 2upe1wy® sin 4 —— — 2wypee; Sin 24—
du at
— uoew;? cos ukF = 0. (43)
Upon recognizing that
wy
‘Z)l [
k1
and
1
Yy = —— = —
ko Vmoeo

are the phase velocities of the progressive disturbance
(pump wave) and the electromagnetic wave in the
unperturbed medium, respectively, and that the local
phase velocity of the electromagnetic wave in the
disturbed medium is

&)

'L — — 44
t ko1 =+ (e1/€0) cos u (44)

(43) can be rewritten in the form
7 \0*E 20y 1 9E
e
v (u)/ o ki vp*(u) dudt’

1 1 9E - d [ 1 :|6E
S, P s
ki vp*(u) 912 " du v22(u) | du

vy d 1 oFE 1 1
G ALLTE L 1Y,
Ry dulvr2(u) ] or (1) v’

In the range
€
— [ pa| <1, (46)
€1

for which the sufficiency condition is not satisfied, there
will always exist a real value #=u, for which the co-
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efficient of 02£/9du? in (43) vanishes, 7.e.,

2
v

) = 0. (47)

kl‘l _ ,Ltof()wl2 — ,ll.()€1<,012 COS Uy = k12 <1 -
212 (2t0)

The existence of real u, in this range is seen by rewriting

(47) as
k 2 2
coS % = ﬂ[ﬂ — 1:| ; (48)
€] Mo€o
hence, 1 is real if
e [(ki/w))?
igl/lwllsl, (19)
€1 Mo€p
or
€n
— | le S 17
€1

which is identical with (46).
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The vanishing of the coefficient of 8*£/du2, however,
gives rise to a singularity of the differential equation
(45). The singularity arises because even though the
values of £ and dE/du are given on the line % =u, for
all ¢/, the values of 82E/du® are not determined by the
differential equation (43), and 9*E/du% may jump across
the line # =uy Hence, the “sonic lines,” for which
v =v,2(uo), are singular lines of the differential equa-
tion (45). On each side of such a sonic line a different
solution will exist, neither of which can be analytically
continued across the sonic line. The sufficiency condi-
tion (17), therefore, eliminates the occurrence of such a
singularity and guarantees the existence of square-
integrable solutions of (45).
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A New Broad-Band Absorption Modulator for Rapid
Switching of Microwave Power*

FRANK REGGIAT, SENIOR MEMBER, IRE

Summary—This paper describes a new technique for obtaining
a broad-band absorption modulator for high-speed switching or am-
plitude modulation of microwave power. This ferrite modulator, an
outgrowth of the longitudinal-field rectangular-waveguide phase
shifter,' has electrical characteristics particularly desirable in a
microwave switch. These include a zero-field insertion loss of ap-
proximately 0.5 db in the ON state, an isolation of greater than 60
db in the OFF state which is nearly independent of the magnetic
control field in this state, and a nearly matched input impedance for
all values of applied field. These electrical characteristics are nearly
constant over a 30 per cent bandwidth at X band. Also, it is possible
to desiga the amplitude modulator to have negligible phase shift at
the desired operating frequency.

Other characteristice of this ferrite modulator include small
physical size, magnetic control fields of less than 50 oersteds, operat-
ing temperatures up to 150°C, and a capability of less than one usec
switching time.

* Received by the PGMTT, March 9, 1961; revised manuscript
received, May 3, 1961.

1 Diamond Ordnance Fuze Labs., Washington, D, C.

L F. Reggia and E. G. Spencer, “A new technique in ferrite phase-
shifting for beam scanning of microwave antennas,” Proc. IRE, vol.
45, pp. 1510-1517; November, 1957,

INTRODUCTION

N its most general form, the relationship between
the induced RF flux density b and the internal RF
magnetic field h in an arbitrarily magnetized poly-
crystalline-ferrite medium is a permeability tensor

given by
b, Koo Hay ﬂm'] hx"l
by | = | Mz By Mye || By |- (1)
b:J Lﬂsx ey ,u:zJ lzzJ

From this expression, Rado? has shown that for an un-
saturated ferrite medium at microwave [requencies and
a dc magnetic field applied in the z direction, the per-
meability tensor reduces to

—jK 0
[k] = E—jl( b 0 _|, (2)
0 0 llzJ

2 (5. T. Rado, “Electromagnetic characterization of ferromagnetic
media,” [RE TRANS. ON ANTENNAS AND PROPAGATION, vol, AP-4, pp.
512-525; July, 1956,



